A Tverberg-type result on multicolored simplices

نویسنده

  • János Pach
چکیده

Let P1, P2, . . . , Pd+1 be pairwise disjoint n-element point sets in general position in d-space. It is shown that there exist a point O and suitable subsets Qi ⊆ Pi (i = 1, 2, . . . , d + 1) such that |Qi| ≥ cd|Pi|, and every d-dimensional simplex with exactly one vertex in each Qi contains O in its interior. Here cd is a positive constant depending only on d.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems

Motivated by topological Tverberg-type problems in topological combinatorics and by classical results about embeddings (maps without double points), we study the question whether a finite simplicial complex K can be mapped into R without triple, quadruple, or, more generally, r-fold points (image points with at least r distinct preimages), for a given multiplicity r ≥ 2. In particular, we are i...

متن کامل

Tverberg's Transversal Conjecture and Analogues of Nonembeddability Theorems for Transversals

In this paper we prove a special case of the transversal conjecture of Tverberg and Vrećica. We consider the case when the numbers of parts ri in this conjecture are powers of the same prime. We also prove some results on common transversals that generalize the classical nonembeddability theorems. We also prove an analogue of colored Tverberg’s theorem by Živaljević and Vrećica. Instead of mult...

متن کامل

Optimal bounds for the colored Tverberg problem

We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal ...

متن کامل

Eliminating Higher-Multiplicity Intersections, III. Codimension 2

We study conditions under which a finite simplicial complex K can be mapped to R without higher-multiplicity intersections. An almost r-embedding is a map f : K → R such that the images of any r pairwise disjoint simplices of K do not have a common point. We show that if r is not a prime power and d ≥ 2r + 1, then there is a counterexample to the topological Tverberg conjecture, i.e., there is ...

متن کامل

Tverberg's theorem with constraints

We extend the topological Tverberg theorem in the following way: Pairs of points are forced to end up in different partition blocks. This leads to the concept of constraint graphs. In Tverberg’s theorem with constraints, we come up with a list of constraints graphs for the topological Tverberg theorem. The proof is based on connectivity results of chessboard-type complexes. Tverberg’s theorem w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1998